133k views
3 votes
How can I solve -6y+11x=-36 and -4y+7x=-24 with Elimination

User Cmart
by
7.4k points

1 Answer

5 votes

\begin{cases}11x-6y=-36\Rightarrow\text{ Equation 1} \\ 7x-4y=-24\Rightarrow\text{ Equation 2}\end{cases}

We can do the following steps to solve the system of equations using the elimination method.

Step 1: We multiply Equation 1 by 7 and the Equation 2 by -11.


\begin{gathered} 11x-6y=-36\Rightarrow\text{ Equation 1} \\ (11x-6y)7=-36\cdot7 \\ \text{ Apply the distributive property} \\ 11x\cdot7-6y\cdot7=-252 \\ 77x-42y=-252 \end{gathered}
\begin{gathered} 7x-4y=-24\Rightarrow\text{ Equation 2} \\ (7x-4y)-11=-24\cdot-11 \\ 7x\cdot-11-4y\cdot-11=264 \\ -77x+44y=264 \end{gathered}

Step 2: We add the resulting equations.


\begin{gathered} 77x-42y=-252 \\ -77x+44y=264\text{ +} \\ ------------- \\ 0x+2y=12 \\ 2y=12 \end{gathered}

Step 3: We solve the above equation.


\begin{gathered} \text{ Divide by 2 from both sides of the equation} \\ (2y)/(2)=(12)/(2) \\ $$\boldsymbol{y=6}$$ \end{gathered}

Step 4: We replace the obtained value in any initial equation. For example, in Equation 1.


\begin{gathered} 11x-6y=-36\Rightarrow\text{ Equation 1} \\ 11x-6(6)=-36 \\ 11x-36=-36 \\ \text{ Add 36 from both sides} \\ 11x-36+36=-36+36 \\ 11x=0 \\ \text{ Divide by 11 from both sides} \\ (11x)/(11)=(0)/(11) \\ $$\boldsymbol{x=0}$$ \end{gathered}

Therefore, the solution of the system of equations is the ordered pair (0,6).

User Steve Madsen
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories