ANSWER
sec²θ + tan²θ = 1
Step-by-step explanation
The main Pythagorean identity is,
![\cos^2\theta+\sin^2\theta=1](https://img.qammunity.org/2023/formulas/mathematics/college/b60ia01u30myqbidygp4hg9oe1oaafsirx.png)
If we subtract sin²θ from both sides, we obtain the second option given,
![\begin{gathered} \cos^(2)\theta+\sin^(2)\theta-\sin^(2)\theta=1-\sin^(2)\theta \\ \\ \cos^2\theta=1-\sin^2\theta \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vdmtgyqmehpynn38j5q1hu83typjh6j3cf.png)
And, if we divide both sides by cos²θ, we obtain the third option given,
![\begin{gathered} (\cos^2\theta+\sin^2\theta)/(\cos^2\theta)=(1)/(\cos^2\theta) \\ \\ 1+\tan^2\theta=\sec^2\theta \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3pdthvytelzsquhce49nvl3tusa8qhfcxm.png)
Hence, the last option, sec²θ + tan²θ = 1 is not a valid Pythagorean identity.