223k views
2 votes
Can you help me find the scale factor and center of dilation and simplify the answer as a fraction or whole number please

Can you help me find the scale factor and center of dilation and simplify the answer-example-1

1 Answer

4 votes

To find the scale factor let's use the fact that


k\cdot\overline{SU}=\overline{S'U'}

Therefore let's find SU and S'U' length


\begin{gathered} \overline{SU}=\sqrt[]{4^2+8^2} \\ \\ \overline{SU}=\sqrt[]{80} \end{gathered}

And S'U'


\begin{gathered} \overline{S^(\prime)U^(\prime)}=\sqrt[]{2^2+4^2} \\ \\ \overline{S^(\prime)U^(\prime)}=\sqrt[]{20} \end{gathered}

Using our first equation:


\begin{gathered} k\cdot\overline{SU}=\overline{S^(\prime)U^(\prime)}\Rightarrow k=\frac{\overline{S^(\prime)U^(\prime)}}{\overline{SU}} \\ \\ k=\frac{\sqrt[]{20}}{\overline{\sqrt[]{80}}} \\ \\ k=\sqrt[]{(1)/(4)} \\ \\ k=(1)/(2) \end{gathered}

And to find the center of dilatation we can use the equation:


\begin{gathered} T=(x_1,y_1) \\ T^(\prime)=(x_2,y_2) \\ \\ x_0=(kx_1-x_2)/(k-1) \\ \\ y_0=(ky_1-y_2)/(k-1) \end{gathered}

Where (x₀, y₀) is the center of dilatation, using the point T a reference we get


\begin{gathered} T=(9_{},0) \\ T^(\prime)=(1_{},4) \\ \\ x_0=\frac{(1)/(2)\cdot9_{}-1}{(1)/(2)-1}=-7 \\ \\ y_0=((1)/(2)\cdot0-4)/((1)/(2)-1)=8 \end{gathered}

Then, the center of dilatation is


(-7,8)

User Jch
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories