To find the scale factor let's use the fact that

Therefore let's find SU and S'U' length
![\begin{gathered} \overline{SU}=\sqrt[]{4^2+8^2} \\ \\ \overline{SU}=\sqrt[]{80} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ocqtuop9b8g5izkxbm6eqviqu70k69cmj1.png)
And S'U'
![\begin{gathered} \overline{S^(\prime)U^(\prime)}=\sqrt[]{2^2+4^2} \\ \\ \overline{S^(\prime)U^(\prime)}=\sqrt[]{20} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4mohq5mc13i51d8kv1xibyc0gaf49iix30.png)
Using our first equation:
![\begin{gathered} k\cdot\overline{SU}=\overline{S^(\prime)U^(\prime)}\Rightarrow k=\frac{\overline{S^(\prime)U^(\prime)}}{\overline{SU}} \\ \\ k=\frac{\sqrt[]{20}}{\overline{\sqrt[]{80}}} \\ \\ k=\sqrt[]{(1)/(4)} \\ \\ k=(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ts8dvr1bbqamuvahtjoeep8m6gkps1dgf9.png)
And to find the center of dilatation we can use the equation:

Where (x₀, y₀) is the center of dilatation, using the point T a reference we get

Then, the center of dilatation is
