75.1k views
0 votes
How many 10-person juries can be formed from 27 possible candidates?

1 Answer

3 votes

The formula for combination is given as


\begin{gathered} ^nC_r=(n!)/((n-r)!r!) \\ \text{where} \\ n=total\text{ number of possible candidates=27} \\ r=Number\text{ of choosing objects from the set=10} \end{gathered}

By substitution?


\begin{gathered} ^nC_r=(n!)/((n-r)!r!) \\ ^nC_r=(n!)/((n-r)!r!) \\ ^(27)C_(10)=(27!)/((27-10)!10!) \\ ^(27)C_(10)=(27!)/((17)!10!) \\ ^(27)C_(10)=(27*26*25*24*23*22*21*20*19*18*17!)/((17!)!10!) \\ ^(27)C_(10)=(3.061359101*10^(13))/(10!) \\ ^(27)C_(10)=(3.061359101*10^(13))/(3628800) \\ ^(27)C_(10)=8436285\text{ } \end{gathered}

Hence,

8436285 juries of 10 people can be formed from 27 possible candidates

User Jarryd
by
8.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories