60.0k views
2 votes
Can you show the answer and explain how u got it

Can you show the answer and explain how u got it-example-1
User Daiana
by
3.6k points

1 Answer

3 votes

GIVEN:

We are given the following functions;


\begin{gathered} f(x)=3x^2+4x-6 \\ \\ g(x)=6x^3-5x^2-2 \end{gathered}

Required;

Find the value of;


(f-g)(x)

To solve the given problem, we apply the rule as shown below;


\begin{gathered} Given:f(x)\text{ }and\text{ }g(x) \\ \\ (f-g)(x)=f(x)-g(x) \end{gathered}

We can now substitute the values of each function into the refined expression and solve as follows;


\begin{gathered} (f-g)(x)=3x^2+4x-6-(6x^3-5x^2-2) \\ \\ =3x^2+4x-6-6x^3+5x^2+2 \end{gathered}

Notice how the minus sign is distributed into the terms in parenthesis on the right.

The negative terms now take on a positive value. We can now simplify further;


\begin{gathered} (f-g)(x)=3x^2+4x-6-6x^3+5x^2+2 \\ \\ (f-g)(x)=-6x^3+3x^2+5x^2+4x-6+2 \\ \\ (f-g)(x)=-6x^3+8x^2+4x-4 \end{gathered}

ANSWER:

Option A is the correct answer.


(f-g)(x)=-6x^3+8x^2+4x-4

User ToonAlfrink
by
3.4k points