GIVEN:
We are given the following functions;
![\begin{gathered} f(x)=3x^2+4x-6 \\ \\ g(x)=6x^3-5x^2-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hf5n2td5364ujx8wjgs7a84jxsuvmw4zah.png)
Required;
Find the value of;
![(f-g)(x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/zg5zkud8gngrir2yydrfwgssx0yrm3uy1i.png)
To solve the given problem, we apply the rule as shown below;
![\begin{gathered} Given:f(x)\text{ }and\text{ }g(x) \\ \\ (f-g)(x)=f(x)-g(x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fi5lptevldtw0dafvqnv68dcdyicikf4la.png)
We can now substitute the values of each function into the refined expression and solve as follows;
![\begin{gathered} (f-g)(x)=3x^2+4x-6-(6x^3-5x^2-2) \\ \\ =3x^2+4x-6-6x^3+5x^2+2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jddpdtu8o2gy4rvf9qkffui3tufo4qd5xj.png)
Notice how the minus sign is distributed into the terms in parenthesis on the right.
The negative terms now take on a positive value. We can now simplify further;
![\begin{gathered} (f-g)(x)=3x^2+4x-6-6x^3+5x^2+2 \\ \\ (f-g)(x)=-6x^3+3x^2+5x^2+4x-6+2 \\ \\ (f-g)(x)=-6x^3+8x^2+4x-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/94v4icv3r6l0gbm7qdg3wwv3b079s3ygky.png)
ANSWER:
Option A is the correct answer.
![(f-g)(x)=-6x^3+8x^2+4x-4](https://img.qammunity.org/2023/formulas/mathematics/college/ar9t33wllvps9cvsl0ynsnniwgkdclx9un.png)