Observe the given figure carefully.
It is a composite cylinder with a hemisphere placed at the top.
The radius of the hemisphere is the same as the radius of the cylinder,
![r=9\text{ yd}](https://img.qammunity.org/2023/formulas/mathematics/college/3j50d9x7mfnq4qnr3sssq8598ww68ingn9.png)
The height of the cylindrical part is 5 yards,
![h=5\text{ yd}](https://img.qammunity.org/2023/formulas/mathematics/college/x0aewh3j8s5sww0sqd6rmmpvztqh8tq3he.png)
Consider the formulae,
![\begin{gathered} \text{Volume of cylinder}=\pi r^2h \\ \text{Volume of hemisphere}=(2)/(3)\pi r^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7yl01ioqrfv3xcksip3ielq7gfkf520xrv.png)
Consider that the volume of the composite figure will be the sum of the volume of cylindrical and the volume of the hemispherical part,
![\begin{gathered} \text{ Total Volume}=\text{ Volume of cylindrical part}+\text{ Volume of hemispherical part} \\ V=\pi r^2h+(2)/(3)\pi r^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3pkrmhto99envvqmi3mini0q5245hyoqxh.png)
Substitute the values,
![\begin{gathered} V=\pi(9)^2(5)+(2)/(3)\pi(9)^3 \\ V=405\pi+486\pi \\ V=891\pi \\ V=891(3.14) \\ V=2797.74 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p8y9ttlfax2fuok3igggpz9j8a6bvw9yf7.png)
Thus, the required volume of the given composite figure is 2797.74 cubic yards.