The number of proper subset of a set N is given as;
![\begin{gathered} P(N)=2^n \\ \text{Where n is the cardinality of the set} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9gzf6w09oye6bjkx9sd7zlr36s75qfzmm4.png)
The cardinality of a set is the number of elements in a set.
Then, given the set;
![N=\mleft\lbrace8,\text{ 50, 69, 17, 33, 55, 28}\mright\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/2fyy2q0k7x4v742jdiad8yyyhczzea3i2x.png)
The cardinality n, is7 because there are seven elements in the set.
Then, the number of proper subsets is;
![\begin{gathered} P(N)=2^7 \\ P(N)=128 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/izrf0lt0vz2qb3mehn312oy2151o9py2bd.png)
Thus, the set N has 128 distinct proper subsets.