Step 1:Write out the coordinates of the vertices of the objects and its images
Let the vertices of R be ABCD such that
A ( -9 , 3) B ( -5 , 7) C (-3 , 5) D (-5 , 2)
Let the vertices of R' be A'B'C'D' such that
A' (9 ,-6) B' (5 , -2) C' (3 , -4) D' (5 , -7)
Step 2: Reflect the object R about the y-axis
The reflection rule about the y-axis is given by
![(x,y)\to(-x,y)](https://img.qammunity.org/2023/formulas/mathematics/college/rm9of062rm29b8zsd64ko69lqolf3iiq66.png)
Let the corresponding image of R after reflection about the y-axis be the quadrialteral A'B'C'D'. Hence,
![\begin{gathered} \text{ the coordinates of A' }=(-(-9),3)=(9,3) \\ \text{ the coordinates of B' }=(-(-5),7)=(5,7) \\ \text{ the coordinates of C' }=(-(-3),5)=(3,5) \\ \text{ the coordinates of D' }=(-(-5),2)=(5,2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ch8fqe3j4bk2kemx2e51i815oi2tpayl5u.png)
Step 3: Translate the quadrilateral A'B'C'D' down by 9 units.
The rule for translation down by 9 units is given by
![(x,y)\to(x,y-9)](https://img.qammunity.org/2023/formulas/mathematics/college/c733h9npzg4j5cjnso9iyl78wzebd9l5jz.png)
Let the corresponding image of A'B'C'D' after translation down the y-axis be the quadrialteral A''B''C''D''.
![\begin{gathered} \text{ the coordinates of A'' }=(9,3-9)=(9,-6) \\ \text{ the coordinates of B'' }=(5,7-9)=(5,-2) \\ \text{ the coordinates of C'' }=(3,5-9)=(3,-4) \\ \text{ the coordinates of D'' }=(5,2-9)=(5,-7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r8r54e2616wyif3buf8ogajaogxn82ahxj.png)
Hence, the coordinates of the vertices of the quadrialteral A''B''C''D'' corresponds to the coordinates of the vertices of R' .
Therefore, a translation 9 units down followed by a reflection over the y -axis, Option A is the correct answer