To find the rate of change we need to find the derivative of the function. The derivative of an exponential function is:
![(d)/(dx)a^x=a^x\ln a](https://img.qammunity.org/2023/formulas/mathematics/college/bo46d42c3gsj08c3s1648l9vvtfnuip616.png)
Then in our case we have:
![\begin{gathered} (d)/(dx)\lbrack35(\text{0}.7)^x\rbrack=35(d)/(dx)(0.7)^x \\ =35(0.7)^x\ln 0.7 \\ =35\ln 0.7(0.7)^x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3io5cufcp37h9mjyc1vj5nt6y45asw42ag.png)
Now we evaluate the derivative at the point x=0, then:
![35\ln \text{0}.7(\text{0}.7)^0=-12.4836](https://img.qammunity.org/2023/formulas/mathematics/college/quzvx56ghpa0pqr002pnjqnn720byzsuj0.png)
Therefore the rate of change is appoximately -12.4836.