10.9k views
2 votes
First rewrite into exponential form. Then use properties of exponents to simplify each expression. Leave your answer in exponential form.

First rewrite into exponential form. Then use properties of exponents to simplify-example-1

1 Answer

0 votes

Step-by-step explanation:

Question 2

To answer the question, we will use the exponential laws


\begin{gathered} a^{(1)/(b)}=\sqrt[b]{a} \\ a^(-1)=(1)/(a) \\ a^{(b)/(c)}=\sqrt[c]{a^b} \\ a^b* a^c=a^(b+c) \\ a^b/ a^c=a^(b-c) \end{gathered}

Applying these laws

Question 2a


\sqrt[4]{(mn)^(12)}=(mn)^{(12)/(4)}
\sqrt[4]{(mn)^(12)}=(mn)^{(12)/(4)}=(mn)^3

Question 2b


โˆš(x).\sqrt[7]{x}

we will rewrite it as


x^{(1)/(2)}* x^{(1)/(7)}=x^{(1)/(2)+(1)/(7)}=x^{(9)/(14)}

Question 2c


\frac{\sqrt[6]{x}}{\sqrt[4]{x}}=\frac{x^{(1)/(6)}}{x^{(1)/(4)}}

Then


\frac{x^{(1)/(6)}}{x^{(1)/(4)}}=x^{(1)/(6)-(1)/(4)}=x^{-(1)/(12)}=(1)/(x^(12))

Question 2d


\sqrt[6]{(r^6)/(s^(18))}=((r^6)/(s^(18)))^{(1)/(6)}

Simplifying further


\frac{r^{(6)/(6)}}{s^{(18)/(6)}}=(r)/(s^3)

Question 2e


\sqrt[3]{x^6q^9}=(x^6q^9)^{(1)/(3)}

Simplifying further


(x^6q^9)^{(1)/(3)}=x^{(6)/(3)}q^{(9)/(3)}=x^2q^3

Question 2f


โˆš(49x^5)=(49x^5)^{(1)/(2)}

Simplifying further


49^{(1)/(2)}x^{(5)/(2)}=7x^{(5)/(2)}

First rewrite into exponential form. Then use properties of exponents to simplify-example-1
User Sdude
by
3.4k points