Given the functions :
![\begin{gathered} f(x)=-2x^2-4 \\ h(x)=x^2-3x+5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xvwncmtxu6s5higy6e34uf5yqlxyfytw9l.png)
a. find f ( -1/4)
so, substitute with x = -1/4 at the function f
![f(-(1)/(4))=-2\cdot(-(1)/(4))^2-4=-2\cdot(1)/(16)-4=-(1)/(8)-4=-4.125](https://img.qammunity.org/2023/formulas/mathematics/college/vhqwt1wdnvbi4ejrhrh60qhg6v82ynraip.png)
b. find f(-3x+2)
so, substitute with x = -3x + 2
![\begin{gathered} f(-3x+2)=-2\cdot(-3x+2)^2-4 \\ =-2\cdot(9x^2-12x+4)-4 \\ =-18x^2+24x-8+4 \\ =-18x^2+24x-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/soxz3uhty5rs2ep5l4s6h6tr1t5ypr73xr.png)
C. find h (5x) - 4
So, the answer will be :
![\begin{gathered} h(5x)-4=(5x)^2-3\cdot(5x)+5-4 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p0wa54l0clg0y31ly6n9cobgqk2md62mkq.png)
d. -4h(3+k)
so, the answer will be :
![-4h(3+k)=-4\cdot\lbrack(3+k)^2-3\cdot(3+k)+5\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/8o33gw8be5k87nu48ptsl0j6gbt4j7sr6f.png)
e. f(-x^3)
So ,the answer will be :
![\begin{gathered} f(-x)^3=-2\cdot(-x^3)^2-4 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hcs51b8n2u1rgsmswkcloag60uc1i5175o.png)
f. h(-2/3)
So, the answer will be :
![h(-(2)/(3))=(-(2)/(3))^2-3\cdot(-(2)/(3))+5=(67)/(9)](https://img.qammunity.org/2023/formulas/mathematics/college/u2vxz0z1z2njn4zm4unla0p1y0v3hyf3xw.png)