186k views
5 votes
For the equation f(x)=x^2-2x-15 find the axis of symmetry

1 Answer

4 votes

Step 1

Given;


f(x)=x^2-2x-15

Required; To find the axis of symmetry

Step 2


\begin{gathered} \mathrm{For\:a\:parabola\:in\:standard\:form}\:y=ax^2+bx+c \\ \mathrm{the\:axis\:of\:symmetry\:is\:the\:vertical\:line\:that\:goes\:through\:the\:vertex}\:x=(-b)/(2a) \\ a=1,b=-2 \end{gathered}
\begin{gathered} x=(-\left(-2\right))/(2\cdot \:1) \\ Simplify \\ x=1 \end{gathered}

Answer;


\begin{gathered} The\text{ axis of symmetry of f\lparen x\rparen=x}^2-2x-15\text{ is;} \\ x=1 \end{gathered}

User Mox Shah
by
4.9k points