156k views
4 votes
Can you help me to do this please?Determine the inverse of the h(x)

Can you help me to do this please?Determine the inverse of the h(x)-example-1

1 Answer

0 votes

Answer:


h^(-1)(x)=x^3+6x^2+12x+7

Step-by-step explanation:

Given the below function;


h(x)=\sqrt[3]{x+1}-2

We'll follow the below steps to determine the inverse of the above function;

Step 1: Replace h(x) with y;


y=\sqrt[3]{x+1}-2

Step 2: Switch x and y;


x=\sqrt[3]{y+1}-2

Step 3: Solve for y by first adding 2 to both sides;


\begin{gathered} x+2=\sqrt[3]{y+1}-2+2 \\ x+2=\sqrt[3]{y+1} \end{gathered}

Step 4: Take the cube of both sides;


\begin{gathered} (x+2)^3=(\sqrt[3]{y+1})^3 \\ (x+2)^3=y+1 \end{gathered}

Step 5: Expand the cube power;

Recall;


(a+b)^3=a^3+3a^2b+3ab^2+b^3

Applying the above, we'll have;


\begin{gathered} (x+2)^3=y+1 \\ x^3+3x^2\cdot2+3x\cdot2^2+2^3=y+1 \\ x^3+6x^2+12x+8=y+1 \end{gathered}

Step 6: Subtract 1 from both sides of the equation;


\begin{gathered} x^3+6x^2+12x+8-1=y+1-1 \\ x^3+6x^2+12x+7=y \\ \therefore y=x^3+6x^2+12x+7 \end{gathered}

Step 7: Replace y with h^-1(x);


h^(-1)(x)=x^3+6x^2+12x+7

User Christian Trimble
by
3.5k points