29.9k views
0 votes
the answer is given, I am interested in understanding the step-by-step details leading up to the answer.

the answer is given, I am interested in understanding the step-by-step details leading-example-1
User Shimo
by
7.6k points

1 Answer

4 votes

Given: The function below


y=(e^{cos((t)/(9))})^4

To Determine: The derivative of the given function

Solution

Let us apply chain rule


(dy)/(dx)=(dy)/(du)*(du)/(dx)

The equation becomes


y=e^{4cos((t)/(9))}
\begin{gathered} u=4cos((t)/(9)) \\ x=(t)/(9) \\ (dx)/(dt)=(1)/(9) \\ u=4cosx \\ (du)/(dx)=-4sinx \\ (du)/(dt)=(du)/(dx)*(dx)/(dt) \\ (du)/(dt)=-4sinx*(1)/(9) \\ (du)/(dt)=-(4)/(9)sin((1)/(9)) \end{gathered}
\begin{gathered} y=e^u \\ (dy)/(du)=e^u \\ (dy)/(dt)=(dy)/(du)*(du)/(dt) \\ (dy)/(dt)=e^u*-(4)/(9)sin((1)/(9)) \\ (dy)/(dt)=e^{4cos((t)/(9))}*-(4)/(9)sin((1)/(9)) \\ (dy)/(dt)=-(4)/(9)sin((t)/(9))e^{cos((t)/(9))} \end{gathered}

Hence,


(dy)/(dt)=-(4)/(9)sin((t)/(9))e^{cos((t)/(9))}

User Quirzo
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories