70.0k views
1 vote
Give. COT A THE following is in the photo below

Give. COT A THE following is in the photo below-example-1

1 Answer

4 votes
Answer:
\sec A=\frac{3\sqrt[]{1521}}{22}

Step-by-step explanation:

Given that


\cot A=-\frac{2}{\sqrt[]{117}}

Since


\begin{gathered} \cot A=(1)/(\tan A) \\ \\ We\text{ have} \\ (1)/(\tan A)=-\frac{2}{\sqrt[]{117}} \\ \\ \tan A=-\frac{\sqrt[]{117}}{2} \\ \\ (\sin A)/(\cos A)=-\frac{\sqrt[]{117}}{2} \end{gathered}

Note that:


\sec A=(1)/(\cos A)

So,


\begin{gathered} A=\cot ^(-1)(-\frac{2}{\sqrt[]{117}}) \\ \\ \sin A=\sin (\cot ^(-1)(-\frac{2}{\sqrt[]{117}})) \end{gathered}


\begin{gathered} \sec A=-\frac{\sqrt[]{117}}{2}\sin A \\ \\ =-\frac{\sqrt[]{117}}{2}*-\frac{3\sqrt[]{13}}{11} \\ \\ =\frac{3\sqrt[]{1521}}{22} \end{gathered}

User Reggie Carey
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories