70.0k views
1 vote
Give. COT A THE following is in the photo below

Give. COT A THE following is in the photo below-example-1

1 Answer

4 votes
Answer:
\sec A=\frac{3\sqrt[]{1521}}{22}

Step-by-step explanation:

Given that


\cot A=-\frac{2}{\sqrt[]{117}}

Since


\begin{gathered} \cot A=(1)/(\tan A) \\ \\ We\text{ have} \\ (1)/(\tan A)=-\frac{2}{\sqrt[]{117}} \\ \\ \tan A=-\frac{\sqrt[]{117}}{2} \\ \\ (\sin A)/(\cos A)=-\frac{\sqrt[]{117}}{2} \end{gathered}

Note that:


\sec A=(1)/(\cos A)

So,


\begin{gathered} A=\cot ^(-1)(-\frac{2}{\sqrt[]{117}}) \\ \\ \sin A=\sin (\cot ^(-1)(-\frac{2}{\sqrt[]{117}})) \end{gathered}


\begin{gathered} \sec A=-\frac{\sqrt[]{117}}{2}\sin A \\ \\ =-\frac{\sqrt[]{117}}{2}*-\frac{3\sqrt[]{13}}{11} \\ \\ =\frac{3\sqrt[]{1521}}{22} \end{gathered}

User Reggie Carey
by
4.0k points