Given:
• Distance between plates = 1.396 mm
,
• Diameter = 2 cm
,
• Electric field = 549,707.592 V/m
,
• Speed = 19,424,119.514 m/s
Let's find the electron's speed as it left the negative plate.
Apply the formula:
![v_i=\sqrt{v_f^2-(2qV)/(m)}](https://img.qammunity.org/2023/formulas/physics/college/fdv3pzjjips3zstby7ghorqf0tnbqudd5y.png)
Where:
vf is the final speed = 19,424,119.514 m/s
q = 1.60 x 10⁻¹⁹
V = E x d = 549,707.592 V/m x 1.396 mm
m is the mass of electron = 9.11 x 10⁻³¹ kg
Thus, we have:
![v_i=\sqrt{(19424119.514)^2-(2(1.6*10^(-19))(549707.592)(1.396*10^(-3)))/(9.11*10^(-31))}](https://img.qammunity.org/2023/formulas/physics/college/62rlieqn0nvgx8bpcf3h608b48or9iu1u8.png)
Solving further, we have:
![\begin{gathered} v_i=\sqrt{1.07740573×10^(14)} \\ \\ v_i=10379815.66\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/b8arji5c39sm3ttazhnz79cwupg1pideho.png)
Therefore, the speed as it left the negative plate is 10379815.66 m/s.
ANSWER:
10,379,815.66 m/s