The tension in the right cable is 525.7 N
How to determine this?
The person is in equilibrium, indicating that the net horizontal force
and the net vertical force
acting on them are both zero.
For the horizontal equilibrium:
![\[ T_(R) \cdot \cos 48^\circ - T_(L) \cdot \cos 35^\circ = 0 \]](https://img.qammunity.org/2023/formulas/physics/college/yksyoawu7sc6347b2cec12zrbefgylz7xf.png)
![\[ T_(R) = \left( (\cos 35^\circ)/(\cos 48^\circ) \right) T_(L) \]](https://img.qammunity.org/2023/formulas/physics/college/5pp3749r5438gw6mvt2mik7tb1yk8z5rb6.png)
For the vertical equilibrium:
![\[ T_(R) \cdot \sin 48^\circ + T_(L) \cdot \sin 35^\circ - W = 0 \]](https://img.qammunity.org/2023/formulas/physics/college/go4zugszameqhkv5s34stho3ajhq9l6scd.png)
![\[ \left( (\cos 35^\circ)/(\cos 48^\circ) \cdot T_(L) \right) \cdot \sin 48^\circ + T_(L) \cdot \sin 35^\circ - mg = 0 \]](https://img.qammunity.org/2023/formulas/physics/college/5bmib2qqu9y0u39r9ewwvw0ohqyo0af1cp.png)
![\[ T_(L) \cdot (\cos 35^\circ \cdot \tan 48^\circ + \sin 35^\circ) = mg \]](https://img.qammunity.org/2023/formulas/physics/college/nr16kxo8hm4l3h39htmgh4trwj6eiydoke.png)
![\[ T_(L) = (mg)/(\cos 35^\circ \cdot \tan 48^\circ + \sin 35^\circ) \]](https://img.qammunity.org/2023/formulas/physics/college/ht0nvvwbtuon914azap10yof4453epatp7.png)
Given:
![\( m = 65 \, \text{kg} \), \( g = 9.8 \, \text{m/s}^2 \)](https://img.qammunity.org/2023/formulas/physics/college/ebgr3pz184zcqmanvkousfaefq92cpy2sd.png)
Substituting the values:
![\[ T_(L) = \frac{(65 \, \text{kg}) * (9.8 \, \text{m/s}^2)}{\cos 35^\circ \cdot \tan 48^\circ + \sin 35^\circ} \]](https://img.qammunity.org/2023/formulas/physics/college/jwo2cif96stcad61xcrcnjcu9ym1usgbdn.png)
![\[ T_(L) = 429.4 \, \text{N} \]](https://img.qammunity.org/2023/formulas/physics/college/h9kwvy6q0byzwk1s1r1uhtdihyajlk7r71.png)
Subsequently, for
:
![\[ T_(R) = \left( (\cos 35^\circ)/(\cos 48^\circ) \right) * (429.4 \, \text{N}) \]](https://img.qammunity.org/2023/formulas/physics/college/uc551m4zdx3pvay2dknfpwchb502kz4iyf.png)
![\[ T_(R) = 525.7 \, \text{N} \]](https://img.qammunity.org/2023/formulas/physics/college/rudy0luaeq6dadurkf3nf1bggodhldbvok.png)
Therefore. the tension in the right cable is 525.7 N,
Complete question:
Find the tension in the right cable.
Express your answer in newtons