122k views
2 votes
Complete parts (a)-(c)a) Find a cubic function that models the data in the table. Report the model with three decimal places.

Complete parts (a)-(c)a) Find a cubic function that models the data in the table. Report-example-1

1 Answer

3 votes

Answer:

Step-by-step explanation:

At x = 3, we have y = 0

This means x = 3 is a root.

Let the cubic function be:


y=(x-3)(x-a)(x-b)_{}

When x = 1, y = -2, so


\begin{gathered} -2=(1-3)(1-a)(1-b) \\ 1=(1-a)(1-b) \\ 1=1-b-a+ab \\ a+b-ab=0\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots..........\ldots\ldots\text{.}(1) \end{gathered}

SImilarly, when x = 2, y = -1


\begin{gathered} -1=(-1-3)(-1-a)(-1-b) \\ -1=4(1+a)(1+b)_{} \\ (1+a)(1+b)=-(1)/(4) \\ \\ 1+b+a+ab=-(1)/(4) \\ \\ a+b+ab=-(5)/(4)\ldots\ldots\ldots.....\ldots\ldots..\ldots.\ldots\ldots\text{.}(2) \end{gathered}

Adding (1) and (2)


\begin{gathered} 2a+2b=-(5)/(4) \\ \\ a+b=-(5)/(8)\ldots\ldots\ldots\ldots\ldots\ldots...........\ldots\ldots\ldots\ldots(3) \end{gathered}

Subtracting (1) from (2)


\begin{gathered} 2ab=-(5)/(4) \\ \\ ab=-(5)/(8)\ldots\ldots..\ldots.\ldots\ldots\ldots\ldots\ldots\ldots\ldots\text{.}(4) \\ \\ \Rightarrow b=-(5)/(8a)\ldots\ldots\ldots\ldots\ldots\ldots\ldots.\ldots\ldots.\text{.}(5) \end{gathered}

Using (5) in (3)


\begin{gathered} a-(5)/(8a)=-(5)/(8) \\ \\ 8a^2-5=-5a \\ 8a^2+5a-5=0 \\ a=(-5)/(16)-\sqrt[]{(185)/(16)} \\ \\ OR \\ (-5)/(16)+\sqrt[]{(185)/(16)} \end{gathered}

Therefore, for b, we have:


\begin{gathered} b=(1)/(16)(√(185)-5) \\ OR \\ b=(1)/(16)(-5-\sqrt[]{185}) \end{gathered}

Replacing a and b by these values obtained, we have the required cubic function

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories