Answer:
Neither
Step-by-step explanation:
Given the equations;
![\begin{gathered} y=-13x+3 \\ y=(5)/(2)x-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/42d1o55j1bjsgvf5fcr4vmgg3kcnovuwld.png)
We want to determine if they are parallel, perpendicular or neither.
Recall that;
For them to be parallel, they must have the same slope.
![m_1=m_2](https://img.qammunity.org/2023/formulas/mathematics/college/bb136i6nrncquza4si9ea0meh8h3qjcl3x.png)
For them to be perpendicular their slope must be negative reciprocal of one another.
![m_1m_2=-1](https://img.qammunity.org/2023/formulas/mathematics/college/g06uuiirl5abnt1q62hvbbgwyhsoapoxn1.png)
For the given equations; with slopes;
![\begin{gathered} m_1=-13 \\ m_2=(5)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b19hpd85ficfaano9oz28i7lk6w7iyf3yb.png)
They are not parallel;
![\begin{gathered} m_1\\e m_2 \\ -13\\e(5)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rqytfsk2eehnu4cx9gc3op4qy6lmnch731.png)
Also, they are not perpendicular;
![\begin{gathered} m_1m_2\\e-1 \\ -13((5)/(2))\\e-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/it20hxjv1r6cg3lzbvefmtehg3svdk5766.png)
Therefore, the two equations are neither parallel nor perpendicular.