Given:
![A=\begin{bmatrix}{4} & {6} & {10} \\ {3} & {10} & {13} \\ {-2} & {-6} & {-8}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/i76krbxlehgn59z1iob9enu3fdstcobz5o.png)
First we need to find the eigenvalues of A. Recall that they are the solutions of the equation det(λI - A) = 0:
![det\lparenλ\begin{bmatrix}{1} & {0} & {0} \\ {0} & {1} & {0} \\ {0} & {0} & {1}\end{bmatrix}-\begin{bmatrix}{4} & {6} & {10} \\ {3} & {10} & {13} \\ {-2} & {-6} & {-8}\end{bmatrix})=0](https://img.qammunity.org/2023/formulas/mathematics/college/z8xvhsw9ibs1hf51n8ho19782a1kanaf47.png)
which becomes
![det\lparen\begin{bmatrix}{λ}-4 & {-6} & {-10} \\ {-3} & {λ-10} & {-13} \\ {2} & {6} & {λ+8}\end{bmatrix})=0](https://img.qammunity.org/2023/formulas/mathematics/college/5nn9rdoe85k4spnwdajhv3niq24wowwtjb.png)
Calculate this determinant:
![\begin{gathered} (λ-4)(λ-10)(λ+8)+(-3)(6)(-10)+(2)(-6)(-13) \\ -(-10)(λ-10)(2)-(-6)(-3)(λ+8)-(-13)(6)(λ-4)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t0qwxfhelobimi8ti9616jebi0powkogcz.png)
Simplify:
![λ^3-6λ^2+8λ=0](https://img.qammunity.org/2023/formulas/mathematics/college/sdojr3794du8flussrg4s7jpalnygk7a25.png)
Then, factor:
![λ(λ-2)(λ-4)=0](https://img.qammunity.org/2023/formulas/mathematics/college/whzt928jjbwt78pp2ekrfh5poj9651o76i.png)
Separate the solutions:
![\begin{gathered} λ=0\text{ or} \\ λ-2=0 \\ λ-2+2=0+2 \\ λ=2\text{ or} \\ λ-4=0 \\ λ-4+4=0+4 \\ λ=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ysvtbb39xrviyywa0qr6f0k1pmpp40bjin.png)
Now that we have found the eigenvalues for A , we can compute the eigenvectors:
For λ = 0
![\begin{bmatrix}{-1} & & \\ {-1} & & \\ {1} & & \end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/liudqd6j7dpek8c6am6nv5zd9tst110f2h.png)
For λ = 2
![\begin{bmatrix}{} & {1} & {} \\ {} & {-2} & {} \\ {} & {1} & {}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/ogval0zfai255k66uk7ojrslfy8xon6djk.png)
For λ = 4
![\begin{bmatrix}{} & {-3} & {} \\ {} & {-5} & {} \\ {} & {3} & {}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/rmr1258jvmuzmapt4l0395sigx9075mvw1.png)
Answer:
The eigenvalues are:
![\begin{gathered} λ=0 \\ λ=2 \\ λ=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eusn2e4tltcwjh0tfj6bt2u79pl4vuj0so.png)
And the eigenvectors are:
![\begin{bmatrix}{} & -{1} & {} \\ {} & {-1} & {} \\ {} & {1} & {}\end{bmatrix},\begin{bmatrix}{} & {1} & {} \\ {} & {-2} & {} \\ {} & {1} & {}\end{bmatrix},\begin{bmatrix}{} & {-3} & {} \\ {} & {-5} & {} \\ {} & {3} & {}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/h4jsbhf170tsagpdwxkrxgvv6vs268ig6e.png)