104k views
0 votes
Please help with this question. Im struggling a little bit

Please help with this question. Im struggling a little bit-example-1

1 Answer

2 votes

Given:


A=\begin{bmatrix}{4} & {6} & {10} \\ {3} & {10} & {13} \\ {-2} & {-6} & {-8}\end{bmatrix}

First we need to find the eigenvalues of A. Recall that they are the solutions of the equation det(λI - A) = 0:


det\lparenλ\begin{bmatrix}{1} & {0} & {0} \\ {0} & {1} & {0} \\ {0} & {0} & {1}\end{bmatrix}-\begin{bmatrix}{4} & {6} & {10} \\ {3} & {10} & {13} \\ {-2} & {-6} & {-8}\end{bmatrix})=0

which becomes


det\lparen\begin{bmatrix}{λ}-4 & {-6} & {-10} \\ {-3} & {λ-10} & {-13} \\ {2} & {6} & {λ+8}\end{bmatrix})=0

Calculate this determinant:


\begin{gathered} (λ-4)(λ-10)(λ+8)+(-3)(6)(-10)+(2)(-6)(-13) \\ -(-10)(λ-10)(2)-(-6)(-3)(λ+8)-(-13)(6)(λ-4)=0 \end{gathered}

Simplify:


λ^3-6λ^2+8λ=0

Then, factor:


λ(λ-2)(λ-4)=0

Separate the solutions:


\begin{gathered} λ=0\text{ or} \\ λ-2=0 \\ λ-2+2=0+2 \\ λ=2\text{ or} \\ λ-4=0 \\ λ-4+4=0+4 \\ λ=4 \end{gathered}

Now that we have found the eigenvalues for A , we can compute the eigenvectors:

For λ = 0


\begin{bmatrix}{-1} & & \\ {-1} & & \\ {1} & & \end{bmatrix}

For λ = 2


\begin{bmatrix}{} & {1} & {} \\ {} & {-2} & {} \\ {} & {1} & {}\end{bmatrix}

For λ = 4


\begin{bmatrix}{} & {-3} & {} \\ {} & {-5} & {} \\ {} & {3} & {}\end{bmatrix}

Answer:

The eigenvalues are:


\begin{gathered} λ=0 \\ λ=2 \\ λ=4 \end{gathered}

And the eigenvectors are:


\begin{bmatrix}{} & -{1} & {} \\ {} & {-1} & {} \\ {} & {1} & {}\end{bmatrix},\begin{bmatrix}{} & {1} & {} \\ {} & {-2} & {} \\ {} & {1} & {}\end{bmatrix},\begin{bmatrix}{} & {-3} & {} \\ {} & {-5} & {} \\ {} & {3} & {}\end{bmatrix}

User Yuqli
by
5.3k points