31.4k views
1 vote
Can you help me solve part A and B ASAP! THANKYOU

Can you help me solve part A and B ASAP! THANKYOU-example-1
User Paperjam
by
8.4k points

1 Answer

2 votes

The shape comprises a semicircle, rectangle, and a trapezoid

A) The shape below will illustrate how the side length of the rectangle will be calculated

Part I is the semicircle of diameter


\begin{gathered} d=8\operatorname{cm} \\ r=(d)/(2) \\ r=(8)/(2)=4\operatorname{cm} \end{gathered}

From the diagram above


AB=r=4\operatorname{cm}

To find the missing side length of the rectangle , we will use the relation below


AB+BC+CD=12\operatorname{cm}

Where.


\begin{gathered} AB=4\operatorname{cm} \\ CD=3.5\operatorname{cm} \end{gathered}

By substituting the values, we will have


\begin{gathered} AB+BC+CD=12\operatorname{cm} \\ 4+BC+3.5=12\operatorname{cm} \\ 7.5+BC=12\operatorname{cm} \\ BC=12-7.5 \\ BC=4.5cm \end{gathered}

The missing side length of the rectangle is = 4.5 cm

Hence,

The rectangle can be represented below as

The formula for the area of the rectangle is


\begin{gathered} A_{\text{rectangle}}=\text{length}* breadth \\ \text{where,} \\ \text{length}=8\operatorname{cm} \\ \text{breadth}=4.5\operatorname{cm} \end{gathered}

By substituting the values, we will have


\begin{gathered} A_{\text{rectangle}}=\text{length}* breadth \\ A_{\text{rectangle}}=8\operatorname{cm}*4.5\operatorname{cm} \\ A_{\text{rectangle}}=36\operatorname{cm}^2 \end{gathered}

Hence,

The Area of the rectangle = 36cm²

B) To calculate the area of the semicircle, we will use the formula below


\begin{gathered} A_{\text{semicircle}}=(\pi* r^2)/(2) \\ \text{where,} \\ r=4\operatorname{cm} \end{gathered}

By substituting the values , we will have


\begin{gathered} A_{\text{semicircle}}=(\pi* r^2)/(2) \\ A_{\text{semicircle}}=(\pi*4^2)/(2)=(16\pi)/(2)=8\pi \\ A_{\text{semicircle}}=25.13\operatorname{cm}^2 \end{gathered}

Hence,

The area of the semicircle = 25.13 cm²

To calculate the area of the trapezoid, we will use the formula below


\begin{gathered} A_{\text{trapezoid}}=(1)/(2)(a+b)* h \\ \text{where,} \\ a=8\operatorname{cm} \\ b=15\operatorname{cm} \\ h=3.5\operatorname{cm} \end{gathered}

The diagram below represents the trapezoid

By substituting the values, we will have


\begin{gathered} A_{\text{trapezoid}}=(1)/(2)(a+b)* h \\ A_{\text{trapezoid}}=(1)/(2)(8\operatorname{cm}+15\operatorname{cm})*3.5\operatorname{cm} \\ A_{\text{trapezoid}}=(1)/(2)(23\operatorname{cm})*3.5\operatorname{cm} \\ A_{\text{trapezoid}}=\frac{80.5\operatorname{cm}}{2} \\ A_{\text{trapezoid}}=40.25\operatorname{cm}^2 \end{gathered}

Hence,

The area of the trapezoid is = 40.25cm²

To calculate the total area of the shape, we will use the formula below


\begin{gathered} \text{Total area=} \\ =A_{\text{SEMICIRCLE}}+A_{\text{RECTANGLE}}+A_{\text{TRAPEZOID}} \end{gathered}

By substituting the values, we will have


\begin{gathered} \text{Total area=}A_{\text{SEMICIRCLE}}+A_{\text{RECTANGLE}}+A_{\text{TRAPEZOID}} \\ \text{Total area}=25.13\operatorname{cm}+36\operatorname{cm}+40.25\operatorname{cm}^2 \\ \text{Total area}=101.38\operatorname{cm}^2 \end{gathered}

Hence,

The Total Area of the composite shape = 101.38cm²

Can you help me solve part A and B ASAP! THANKYOU-example-1
Can you help me solve part A and B ASAP! THANKYOU-example-2
Can you help me solve part A and B ASAP! THANKYOU-example-3
User Jota Pardo
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories