Answer
• x = –1
• y = –2
• z = 1
Step-by-step explanation
Given the system:
![\begin{gathered} -5x+3z=8\text{, equation 1} \\ 5y-4z=-14,\text{ equation 2} \\ x-4y=7,\text{ equation 3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vpaj7qou3bdnajlqzvmgjvfq4zsdsjiwgh.png)
We have to divide equation 1 over 5 and add it to equation 2:
![\begin{gathered} -(5x)+0y+3z=8 \\ x-4y+0z=7 \\ 0x+5y-4z=-14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/efcgqly8bi1cmjf1kji5i1z49ih4gjbh06.png)
![\begin{gathered} (-(5x)+0y+3z=8)/(5) \\ x-4y+0z=7 \\ 0x+5y-4z=-14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7yms30kkntcv0iwkclnry511hpfcliwozc.png)
![\begin{gathered} -x+0y+(3)/(5)z=(8)/(5) \\ x-4y+0z=7 \\ 0x+5y-4z=-14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ygwyv0qdid0yvsqimpu7wciv2g6gc4ak8f.png)
Now, we have to add 1/5(equation 1) to equation 2:
![\begin{gathered} -x+0y+(3)/(5)z=(8)/(5) \\ x-4y+0z=7 \\ --------- \\ 0x-4y+(3)/(5)z=(43)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4gfmn142r4tkr7ybmz5j7h98fgni7lhfim.png)
Next, we multiply the equation 2 obtained previously times 5:
![\begin{gathered} (0x-4y+(3)/(5)z=(43)/(5))\cdot5 \\ -20y+3z=43 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z9q4f9uy1awqxyf2e9zw6eivv42dqx32v9.png)
Then, we divide equation 2 over 4:
![\begin{gathered} (-20y+3z=43)/(4) \\ -5y+(3)/(4)z=(43)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4f4m5pshzcmtij2naw945937oqmbtzqeyc.png)
We add it to equation 3:
![\begin{gathered} -5y+(3)/(4)z=(43)/(4) \\ 5y-4z=-14 \\ ------- \\ 0y-(13)/(4)z=-(13)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t6xqip93vw0csjes9pm0e50hnpzfy17jt5.png)
Then, we are left with:
![\begin{equation*} -(13)/(4)z=-(13)/(4) \end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/7ohmby9202y0h03w3xxcdfz6y4bzn0c9ia.png)
Simplifying:
![-13z=-13](https://img.qammunity.org/2023/formulas/mathematics/college/5x014w5wcrkjzs4etd10og9c5s553f4kth.png)
![z=(-13)/(-13)=1](https://img.qammunity.org/2023/formulas/mathematics/college/f7kyqybkn7hrzz7sinf0g09ia9uzurx5pe.png)
![z=1](https://img.qammunity.org/2023/formulas/mathematics/college/qv199bxnq91oqqcyb3rnfy3t87ndj3ovyl.png)
Now that we have the value of z (z = 1), we can replace it in the modified equation 2 and solve for y:
![-20y+3z=43](https://img.qammunity.org/2023/formulas/mathematics/college/42s1yfm2t11nhn35z28qkvh4dn7ol8dn0k.png)
![-20y+3(1)=43](https://img.qammunity.org/2023/formulas/mathematics/college/jkkjksi7unndaoalc9hvfv5r7qtfuztac9.png)
![-20y+3=43](https://img.qammunity.org/2023/formulas/mathematics/college/t3sfpxx91w0li9ami3mivne98s1ebn3h8x.png)
![-20y=43-3](https://img.qammunity.org/2023/formulas/mathematics/college/2yumfdwolqzjfutubxphafkzmbgw59xgjq.png)
![-20y=40](https://img.qammunity.org/2023/formulas/mathematics/college/2vm524mp9vpfbzyfcpdp2m531yh39fkh8e.png)
![y=(40)/(-20)](https://img.qammunity.org/2023/formulas/mathematics/college/qniihxv8jgyr0k4y5g5atrxel574q6m837.png)
![y=-2](https://img.qammunity.org/2023/formulas/mathematics/high-school/tcn3iys8rd82ithvwo5zbctm5hqvvqtks0.png)
Finally, calculating the value of x with any of the equations (as we already have the other two values):
![x-4(-2)=7](https://img.qammunity.org/2023/formulas/mathematics/college/v6hhc8jnbtn1vlesgjejfeqvf2amihmii7.png)
![x+8=7](https://img.qammunity.org/2023/formulas/mathematics/college/fzr1pkvrc4y9kiqzjxnrxqjxk8856g3kok.png)
![x=7-8](https://img.qammunity.org/2023/formulas/mathematics/college/ogerq2zrxvg4u500lpztz39zdebfiwjs7j.png)
![x=-1](https://img.qammunity.org/2023/formulas/mathematics/college/di7tgv2dgty5ck1t8uxuokptc8rphbkzsi.png)