When given a problem in which you have to choose subsets of length k from a set with n elements and:
1.- The order does not matter, you can use the number of combinations formula:
![C(n,r)=(n!)/(r!(n-r)!).](https://img.qammunity.org/2023/formulas/mathematics/college/k3jspw7ofbl51bb82y7sor3ngc8bl0140i.png)
2.- The order matters, you can use the number of permutations formula:
![P(n,r)=(n!)/((n-r)!).](https://img.qammunity.org/2023/formulas/mathematics/college/7rvbwn33g9662mgrou4jllsew3wb2jw2k3.png)
Therefore, using the first formula for part (b), and the second one for part (a) you get:
![\begin{gathered} C(3,2)=(3!)/(2!(3-2)!)=3, \\ P(3,2)=(3!)/((3-2)!)=6. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s7weu0y3oe29vdsb2chqwhss5vo08cdz23.png)
Answer:
![\begin{gathered} (a)\text{ 6,} \\ (b)\text{ 3.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fzdf61w59hmlcy0bnz6kr2amtfneakjbyb.png)