Given the expression:
![(5x^2+25x+20)/(7x)](https://img.qammunity.org/2023/formulas/mathematics/college/xdfczyvbti6uwliky53lifg6pwwl5e1fmx.png)
Let's determine where each piece belongs to create a rational expression equivalent to the expression given.
To determine, where each piece belong, let's input each value and simplify.
First simplify the given expression
![\begin{gathered} (5x^2+25x+20)/(7x) \\ \\ =(5(x+1)(x+4))/(7x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/umb8b7fzlthfkgtr8e300uhw7x0di6xqmn.png)
Thus, we have:
![(x^2+2x+1)/(x-1)\cdot(5x^2+15x-20)/(7x^2+7)](https://img.qammunity.org/2023/formulas/mathematics/college/d7fzx3aeiah98fsl7g5d1h2l9l8b72ekbi.png)
Let's simplify the expression above to verify if it is equivalent to the simplified expression of the given expression.
We have:
![\begin{gathered} (x^2+2x+1)/(x-1)\cdot(5x^2+15x-20)/(7x^2+7) \\ \\ =((x+1)^2)/(x-1)\cdot(5(x-1)(x+4))/(7x^2+7) \\ \\ =((x+1)^2)/(x-1)\cdot\frac{5(x-1)(x+4)}{7x(x^{}+1)} \\ \\ =((x+1))/(1)\cdot(5(x+4))/(7x) \\ \\ =(5(x+1)(x+4))/(7x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rjiu6c3dli7h3uq4ze6pqoihk6qrc68a9x.png)
The expressions are equivalent.
Therefore, the correct expression is:
![(x^2+2x+1)/(x-1)\cdot(5x^2+15x-20)/(7x^2+7)](https://img.qammunity.org/2023/formulas/mathematics/college/d7fzx3aeiah98fsl7g5d1h2l9l8b72ekbi.png)
The expression in the numerator = 5x² + 15x - 20
The expression in the denominator = x - 1
ANSWER:
![(x^2+2x+1)/(x-1)\cdot(5x^2+15x-20)/(7x^2+7)](https://img.qammunity.org/2023/formulas/mathematics/college/d7fzx3aeiah98fsl7g5d1h2l9l8b72ekbi.png)