The given problem can be exemplified in the following diagram:
To determine the constant of the spring we can use Hook's law, which is the following:
![F=k\Delta x](https://img.qammunity.org/2023/formulas/physics/college/gjsi1o1cyl5ae5pvotpu3j8akz5yoxz458.png)
Where:
![\begin{gathered} F=\text{ force on the string} \\ k=\text{ string constant} \\ \Delta x=\text{ difference in length} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/khog18o1vhx12lz1lp2vz5rr6c8rescy47.png)
Now, we solve for "k" by dividing both sides by the difference in length:
![(F)/(\Delta x)=k](https://img.qammunity.org/2023/formulas/physics/college/n6w5cvdwn1s2jbjuxnnzjnd1x830s08fe1.png)
The force on the string is equivalent to the weight attached to it. The weight is given by:
![W=mg](https://img.qammunity.org/2023/formulas/physics/college/mwp20nloxyakj67s56rj7ugdcwo94t9z7k.png)
Where:
![\begin{gathered} W=\text{ weight} \\ m=\text{ mass} \\ g=\text{ acceleration of gravity} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/xk36jgrcoae512w2kpt5o3vfzzqpjf6wo7.png)
Substituting in the formula for the constant of the spring we get:
![(mg)/(\Delta x)=k](https://img.qammunity.org/2023/formulas/physics/college/2h7ugar9fn8e7psecm2vqlvvc0br6e1vb6.png)
Now, we substitute the values:
![\frac{(3kg)(9.8(m)/(s^2))}{35\operatorname{cm}-30\operatorname{cm}}=k]()
Before solving we need to convert the centimeters into meters. To do that we use the following conversion factor:
![100\operatorname{cm}=1m]()
Therefore, we get:
![\begin{gathered} 35\operatorname{cm}*\frac{1m}{100\operatorname{cm}}=0.35m \\ \\ 30\operatorname{cm}*\frac{1m}{100\operatorname{cm}}=0.30m \end{gathered}]()
Substituting in the formula we get:
![((3kg)(9.8(m)/(s^2)))/(0.35m-0.30m)=k](https://img.qammunity.org/2023/formulas/physics/college/hk70vfkxnxizkzr6mht2njrfr038kz305n.png)
Solving the operations:
![588(N)/(m)=k](https://img.qammunity.org/2023/formulas/physics/college/av3cgureibrazncxlaxuu4iyc1beinkle9.png)
Therefore, the constant of the spring is 588 N/m.