The volume will be given by:
The volume of the half cylinder on top, plus the volume of the rectangular prims, plus the volume of the half cylinder on the right:
so:
The volume of the half cylinder on top is:
![\begin{gathered} V1=(\pi r^2l)/(2) \\ V1=(\pi(1^2)5)/(2)=(5\pi)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ys6gknfh879cq75m4447sqtogmymaht1m3.png)
The volume of the half cylinder on the right is:
![\begin{gathered} V2=(\pi r^2l)/(2) \\ V2=(\pi(2^2)\cdot5)/(2)=10\pi \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w9791916itw2dsqo027j2zqr4zwnbm5rbu.png)
The volume of the rectangular prism is:
![\begin{gathered} V3=l\cdot w\cdot h \\ V3=4\cdot2\cdot5 \\ V3=40 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/izg8vkojfp0ptk3o25ipw928yn5js4cfdf.png)
Therefore, the total volume is:
![\begin{gathered} Vt=V1+V2+V3 \\ Vt=(5)/(2)\pi+10\pi+40=79.3mm^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/biyhzw4g01ol0jjg12rflo01pady68pi2w.png)