From the given values, we can see that the lowest values is -32 and the highest value ie -4. Since the range is the difference betwwwn the highest and the lowest value, the range is
![\begin{gathered} \text{Range}=-4-(-32) \\ \text{Range}=28 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ydum1cptqps72j7g0144kvdwdbj3supwrt.png)
On the other hand, the sample variance formula is
![S^2=\sqrt[]{\frac{\sum ^7_(n\mathop=1)(x-\bar{x})^2}{n-1}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/64c985824rbfwbkli1ppc5lhfa3kgbk86h.png)
where x^bar is the mean and n is the total number of sample elements. In our case, n=7 and the mean is
![\begin{gathered} \bar{x}=(-10-16-21-24-4-30-32)/(7) \\ \bar{x}=-(137)/(7) \\ \bar{x}=-19.5714 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/oapusvjftal5rnepdqh69y4cw8o19xnvwb.png)
Then, the sample variance is given by
![\begin{gathered} S^2=((-10-19.57)^2+(-16-19.57)^2+(-21-19.57)^2+\cdot\cdot\cdot+(-32-19.57)^2)/(6) \\ S^2=105.2857 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/x3kw3xcj4niwymqw5czbh941oqqepktuhw.png)
Since the standard deviation is the square root of the sample variance, we have
![\begin{gathered} S=\sqrt[]{105.2857} \\ S=10.26088 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/a64y7tl0p1fltvk77o3swj11a4ee96podc.png)
By rounding the solutions to the nearest tenth, the answers are:
![\begin{gathered} \text{Range}=28 \\ \text{Variance}=105.3 \\ \text{ Standard deviation = 10.3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/o224o1eo0vn4sbupytzmoxbgvjvbuwzjfo.png)