Given the equations:
![\begin{gathered} f(x)=3x^2+5 \\ \\ g(x)=4x+4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x79xv7jc5jng8jdqf0o4wgnofvggzw8f58.png)
Let's find the point where both equations intersect.
To find the point let's first find the value of x by equation both expression:
![3x^2+5=4x+4](https://img.qammunity.org/2023/formulas/mathematics/college/z4g6q6x7b0o35yq49imkxnxyl07lzhm973.png)
Now, equate to zero:
![\begin{gathered} 3x^2+5-4x-4=0 \\ \\ 3x^2-4x+5-4=0 \\ \\ 3x^2-4x+1=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q77it51oj2tspokycbtm1t4pzo5ae2t13t.png)
Now let's factor by grouping
![\begin{gathered} 3x^2-1x-3x+1=0 \\ (3x^2-1x)(-3x+1)=0 \\ \\ x(3x-1)-1(3x-1)=0 \\ \\ \text{ Now, we have the factors:} \\ (x-1)(3x-1)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wrx1ltr6c0k27vkvrku8zu89g5gee5ig8y.png)
Solve each factor for x:
![\begin{gathered} x-1=0 \\ Add\text{ 1 to both sides:} \\ x-1+1=0+1 \\ x=1 \\ \\ \\ \\ 3x-1=0 \\ \text{ Add 1 to both sides:} \\ 3x-1+1=0+1 \\ 3x=1 \\ Divide\text{ both sides by 3:} \\ (3x)/(3)=(1)/(3) \\ x=(1)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x5s0jf6ilazki0055f70ypiir8rfy0fv3b.png)
We can see from the given options, we have a point where the x-coordinate is 1 and the y-coordinate is 8.
Since we have a solution of x = 1.
Let's plug in 1 in both function and check if the result with be 8.
![\begin{gathered} f(1)=3(1)^2+5=8 \\ \\ g(1)=4(1)+4=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/91e8bw1k9f6d3o3djwmvh8eg42203y12gl.png)
We can see the results are the same.
Therefore, the point where the two equations meet is:
(1, 8)
ANSWER:
B. (1, 8)