The shape in question is a composite shape.
It comprises two(2) shapes which are a triangle and a semi-circle.
The area of the shape is the sum of the area of the triangle and that of the semi-circle
The area of the triangle is:
![A_(triangle)=(1)/(2)* base* height](https://img.qammunity.org/2023/formulas/mathematics/college/p11m1pbijilttsv2u7598100gdr8m05wlu.png)
![\begin{gathered} \text{Base of the triangle =}6\text{ yard} \\ Height\text{ of the triangle= 4 yard} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/afw68v9030d6mrgmt7er1uueoon6t9sp7e.png)
Thus,
![\begin{gathered} A_(triangle)=(1)/(2)*6*4 \\ A_(triangle)=12\text{ yards} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p3ik8ueii51ry71m3459nhnrw83c35zr6r.png)
Area of the Semi-circle is:
![A_(semi-circle)=(\pi* r^2)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/1a0bb315n56trnt4yaiqvgtbw8sxzwaf0i.png)
![\begin{gathered} \text{Diameter of the circle=6 yard} \\ \text{Radius}=(Diameter)/(2) \\ \text{Radius}=(6)/(2)=3\text{ yard} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eh3yf4h9ho5epnpo934cnvl714h8kailrs.png)
![\begin{gathered} A_(semi-circle)=(3.14*3^2)/(2) \\ A_(semi-circle)=(28.26)/(2) \\ A_(semi-circle)=14.13\text{ yard} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dtadov24624qaxr2kmnrowdst7tgvqjfit.png)
Hence, the area of the composite shape is:
![\begin{gathered} \text{Area of the triangle + Area of the semi-circle} \\ 12+14.13=26.13\text{ yard} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yto4klwwu6dd8y4zv81c7fbdc14y800srn.png)