Answer
Domain is all real numbers except x ≠ 0, -4, and 4
Vertical asymptote at x = 0, -4, and 4
Step-by-step explanation
Given function:
![f(x)=(3x-4)/(x^3-16x)](https://img.qammunity.org/2023/formulas/mathematics/college/wqy2l9p6rlh1tg2ql4mm65a1rrkyugmwu2.png)
Note: The domain of a function is a set of input or argument values for which the function is real and defined.
For the function to be real; the denominator must not be equal zero, i.e.
![\begin{gathered} x^3-16x\\e0 \\ x(x^2-16)\\e0 \\ x(x-4)(x+4)\\e0 \\ x\\e0,x-4\\e0,\text{ and }x+4\\e0 \\ \therefore x\\e0,x\\e4,\text{ and }x\\e-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qtjvxw861edlb9ajxoiaa9uufxwyxnpfsg.png)
Hence, the domain is all real numbers except x ≠ 0, -4, and 4.
Note: A vertical asymptote with a rational function occurs when there is division by zero.
Hence, the vertical asymptote at x = 0, -4, and 4