21.9k views
5 votes
Question is down below, match the answer choices with the units.

Question is down below, match the answer choices with the units.-example-1

1 Answer

5 votes

whichWe define:

• A = original area = 100 sq units,

,

• A' = dilated area.

If we dilate a trapezoid in a scale factor k, the area scales as:


A\rightarrow A^(\prime)=k^2\cdot A\text{.}

Using the area A = 100 sq units, we have:


\begin{gathered} A^(\prime)=k^2\cdot100\text{ sq units,} \\ k^2=\frac{A^(\prime)}{100\text{ sq units}}, \\ k=\sqrt[]{\frac{A^(\prime)}{100\text{ sq units}}}\text{.} \end{gathered}

This formula gives as the scale factor k for witch we must dilate the trapezoid to have an area A'.

1) For A' = 6400 sq units, we have:


k=\sqrt[]{\frac{6400\text{ sq units}^{}}{100\text{ sq units}}}=\sqrt[]{64}=8.

2) For A' = 100 sq units, we have:


k=\sqrt[]{\frac{100\text{ sq units}^{}}{100\text{ sq units}}}=\sqrt[]{1}=1.

3) For A' = 25 sq units, we have:


k=\sqrt[]{\frac{25\text{ sq units}^{}}{100\text{ sq units}}}=\sqrt[]{(1)/(4)}=(1)/(2).

4) For A' = 900 sq units, we have:


k=\sqrt[]{\frac{900\text{ sq units}^{}}{100\text{ sq units}}}=\sqrt[]{9}=3.

Answers

• 8

,

• 1

,

• 1/2

,

• 3

User UncleFifi
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories