21.9k views
5 votes
Question is down below, match the answer choices with the units.

Question is down below, match the answer choices with the units.-example-1

1 Answer

5 votes

whichWe define:

• A = original area = 100 sq units,

,

• A' = dilated area.

If we dilate a trapezoid in a scale factor k, the area scales as:


A\rightarrow A^(\prime)=k^2\cdot A\text{.}

Using the area A = 100 sq units, we have:


\begin{gathered} A^(\prime)=k^2\cdot100\text{ sq units,} \\ k^2=\frac{A^(\prime)}{100\text{ sq units}}, \\ k=\sqrt[]{\frac{A^(\prime)}{100\text{ sq units}}}\text{.} \end{gathered}

This formula gives as the scale factor k for witch we must dilate the trapezoid to have an area A'.

1) For A' = 6400 sq units, we have:


k=\sqrt[]{\frac{6400\text{ sq units}^{}}{100\text{ sq units}}}=\sqrt[]{64}=8.

2) For A' = 100 sq units, we have:


k=\sqrt[]{\frac{100\text{ sq units}^{}}{100\text{ sq units}}}=\sqrt[]{1}=1.

3) For A' = 25 sq units, we have:


k=\sqrt[]{\frac{25\text{ sq units}^{}}{100\text{ sq units}}}=\sqrt[]{(1)/(4)}=(1)/(2).

4) For A' = 900 sq units, we have:


k=\sqrt[]{\frac{900\text{ sq units}^{}}{100\text{ sq units}}}=\sqrt[]{9}=3.

Answers

• 8

,

• 1

,

• 1/2

,

• 3

User UncleFifi
by
3.3k points