Solution
- The question gives us a composite figure made up of a cylinder and a cube.
- We are required to find the volume of the cylinder and the cube and then use the results to find the volume of the composite figure.
- The formulas needed for this calculation are:
![\begin{gathered} Volume\text{ of Cylinder}=\pi* r^2* h \\ where, \\ r=radius\text{ of the cylinder} \\ h=height\text{ of the cylinder} \\ \\ Volume\text{ of Cube}=l^3 \\ where, \\ l=dimension\text{ of the cube} \\ \\ Volume\text{ of Composite figure}=Volume\text{ of Cylinder }+Volume\text{ of Cube} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g1wlcx9emj32wu33jjfhesn7vo36axpn7q.png)
- With the information above, we can proceed to solve the question
Volume of the Cylinder:
![\begin{gathered} V=\pi* r^2* h \\ r=(6)/(2)=3\text{ \lparen Since 6cm is the diameter of the cylinder\rparen} \\ h=4 \\ \\ \therefore V=\pi*3^2*4 \\ \\ V=36\pi cm^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d42oij8ywrdsa2idq2kq3gyomhqeeyaeg4.png)
Volume of Cube:
![\begin{gathered} V=l^3 \\ l=9 \\ \therefore V=9^3=729cm^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a5f1z7h5f1huto1hjnbkshj3yz24xmsyfm.png)
Volume of Composite Figure:
![\begin{gathered} V=36\pi+729 \\ use\text{ }\pi=3.14 \\ \\ V=36\left(3.14\right)+729 \\ \\ V=842.04cm^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/91b5wa4d95y1i3x06wyo0nxlbnkgq0rmno.png)
Final Answer
The volume of the composite shape is 842.04 cm³