Problem: consider the function f(x) whose second derivative is f' '(x)=4x+4sin(x). If f(0)=3 and f'(0)=4, what is f(5)?.
Solution:
Let the function f(x) whose second derivative is:
![f^(\prime\prime)(x)\text{ = 4x+4sin(x)}](https://img.qammunity.org/2023/formulas/mathematics/college/6de5eixtp7rjfmqxa1yky9dq50hanfmk7i.png)
Now, the antiderivative (integral) of the above function would be:
EQUATION 1:
![f^(\prime)(x)=\int f^(\prime\prime)(x)\text{ }dx\text{= }2x^2-4\cos (x)\text{ +C1}](https://img.qammunity.org/2023/formulas/mathematics/college/qyak55utrp3tan11o8udzodd4ex33b4odb.png)
where C1 is a constant because we have an indefinite integral. Now the antiderivative (integral) of the above function f´(x) is:
![f(x)=\int f^(\prime)(x)\text{ }dx\text{=}\int \text{ (}2x^2-4\cos (x)\text{ +C1)}dx\text{ }](https://img.qammunity.org/2023/formulas/mathematics/college/8qo2r8fyjxe5ozk06d6mcp8zyx1yja5xq3.png)
that is:
EQUATION 2:
![f(x)=\text{ }(2x^3)/(3)-4\sin (x)+C1x+\text{ C2}](https://img.qammunity.org/2023/formulas/mathematics/college/pqbtrxqy4vp904l57bggb3kld885sb7r5y.png)
where C2 is a constant because we have an indefinite integral.
Now using the previous equation, if f(0)= 3 then:
![3=\text{ C2}](https://img.qammunity.org/2023/formulas/mathematics/college/uyahymkdlhavpn1wmlewyc9vtd8pq7gweu.png)
Now, using equation 1 and the fact that f ´(0) = 4, then we have:
![4=f^(\prime)(0)\text{= }^{}-4\text{ +C1}](https://img.qammunity.org/2023/formulas/mathematics/college/yrs708uw7gv3b6b2x1l1ur0m37grzagl76.png)
That is:
![4=\text{ }^{}-4\text{ +C1}](https://img.qammunity.org/2023/formulas/mathematics/college/4mtv5zci9qh0nlq6c6qngs3h66od68td8i.png)
Solve for C1:
![8=\text{ }^{}\text{C1}](https://img.qammunity.org/2023/formulas/mathematics/college/3y4m9gu3k2az7fcwjdc9u7i49x7j8bn443.png)
Now, replacing the constants C1 and C2 in equation 2, we have an expression for f(x):
![f(x)=\text{ }(2x^3)/(3)-4\sin (x)+8x+3](https://img.qammunity.org/2023/formulas/mathematics/college/l58jincrgr36338s3r1m3i20ue28aa4sg7.png)
Then f(5) would be:
![f(5)=\text{ }(2(5)^3)/(3)-4\sin (5)+40+3=\text{ }125.98](https://img.qammunity.org/2023/formulas/mathematics/college/knx7b6zelvc6tqpf2v5f641fmiejipmvlj.png)
then the correct answer is:
![f(5)=\text{ }125.98](https://img.qammunity.org/2023/formulas/mathematics/college/kkok00ihb6n4jsitu2dt39kzi12h5oipsr.png)