The law of cosines is defined as follows:
![a^2=b^2+c^2-2bc\cos A](https://img.qammunity.org/2023/formulas/mathematics/college/skeau9ab3o6bvr1rywsutrp9q4x3jotvls.png)
For the given triangle
a=AC=8
b=AB=14
c=BC=11
∠A=∠B=?
-Replace the lengths of the sides on the expression
![8^2=14^2+11^2-2\cdot14\cdot11\cdot\cos B](https://img.qammunity.org/2023/formulas/mathematics/college/kh2e2y793la0lcj99np8fdkk3vtt6acsb6.png)
-Solve the exponents and the multiplication
![\begin{gathered} 64=196+121-308\cos B \\ 64=317-308\cos B \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8kr09w3cz793x6o93pw56u5sf9lbcemf92.png)
-Pass 317 to the left side of the expression by applying the opposite operation to both sides of it
![\begin{gathered} 64-317=317-317-308\cos B \\ -253=-308\cos B \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s7v7dabc0tfn4m5nr8xc67wolehavs5qnn.png)
-Divide both sides by -308
![\begin{gathered} -(253)/(-308)=-(308\cos B)/(-308) \\ (23)/(28)=\cos B \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sx0wdsmzymt6d1xddx33gy8f74xxc92pse.png)
-Apply the inverse cosine to both sides of the expression to determine the measure of ∠B
![\begin{gathered} \cos ^(-1)(23)/(28)=\cos ^(-1)(\cos B) \\ 34.77º=B \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/td5p4izvpengfc2rrd040tg06topvbp00o.png)
The measure of ∠B is 34.77º