Vector diagram:
The resultant vector is given as,
![R=\sqrt[]{A^2+B^2+2AB\cos \theta}](https://img.qammunity.org/2023/formulas/physics/college/p9yv3cn0vcn295cj6gehq5gy50m1h498dt.png)
Here, θ is the angle between vector A and B.
Substituting all known values,
![\begin{gathered} R=\sqrt[]{(63.5)^2+(101)^2+2*101*63.5*\cos (33^(\circ))} \\ =158.08\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/yyhanb72c8g9jlf7037anixahaimewtwxw.png)
Therefore, the resultant magnitue of the sum of these two vectors are 158.08 m.
The x-component of the magnitude is given as,
![\begin{gathered} R_x=101\cos (57^(\circ))+63.5\cos (90^(\circ)) \\ =55.0\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/l2fprk1qfvaiqn05lzacx63howxc8e2ddv.png)
The y- component of the magnitude is given as,
![\begin{gathered} R_y=63.5\sin (90^(\circ))+101\sin (57^(\circ)) \\ =148.2\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/fok5g5m4qcab5xhvo8y0hkp3nwap6v0da3.png)
Therefore, the direction is given as,
![\begin{gathered} \phi=\tan ^(-1)((R_y)/(R_x)) \\ =\tan ^(-1)(\frac{148.2\text{ m}}{55.0\text{ m}}) \\ =69.63^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/qykbkqsby29pryfj25yzc576mqor5c2eo9.png)
Therefore, the direction of the resultant vector is 69.63°.