152k views
5 votes
I need this practice problem answered I will provide the answer options in another pic

I need this practice problem answered I will provide the answer options in another-example-1
User Krirk
by
8.8k points

1 Answer

2 votes

The inverse of a matrix can be calculated as:


\begin{gathered} \text{When} \\ A=\begin{bmatrix}{a} & {b} & {} \\ {c} & {d} & {} \\ {} & {} & \end{bmatrix} \\ \text{Then A\textasciicircum-1 is:} \\ A^(-1)=(1)/(ad-bc)\begin{bmatrix}{d} & -{b} & {} \\ {-c} & {a} & {} \\ {} & {} & \end{bmatrix} \end{gathered}

Then, let's start by calculating the inverse of the given matrix:


\begin{gathered} \begin{bmatrix}{4} & {1} & {} \\ {-2} & {3} & {} \\ {} & {} & \end{bmatrix}^(-1)=(1)/(4\cdot3-1\cdot(-2))\begin{bmatrix}{3} & -{1} & {} \\ {-(-2)} & {4} & {} \\ {} & {} & \end{bmatrix} \\ \begin{bmatrix}{4} & {1} & {} \\ {-2} & {3} & {} \\ {} & {} & \end{bmatrix}^(-1)=(1)/(14)\begin{bmatrix}{3} & -{1} & {} \\ {2} & {4} & {} \\ {} & {} & \end{bmatrix} \end{gathered}

The problem says he multiplies the left side of the coefficient matrix by the inverse matrix, thus:


\begin{gathered} \begin{bmatrix}{4} & {1} & {} \\ {-2} & {3} & {} \\ {} & {} & \end{bmatrix}^(-1)\begin{bmatrix}{4} & {1} & {} \\ {-2} & {3} & {} \\ {} & {} & \end{bmatrix}\cdot\begin{bmatrix}{x} & {} & {} \\ {y} & {} & {} \\ {} & {} & {}\end{bmatrix}=\begin{bmatrix}{4} & {1} & {} \\ {-2} & {3} & {} \\ {} & {} & \end{bmatrix}^(-1)\begin{bmatrix}{2} & {} & {} \\ {-22} & {} & {} \\ {} & {} & {}\end{bmatrix} \\ \end{gathered}

*These matrices will be the options to put on the first and second boxes.

Then:


\begin{gathered} \begin{bmatrix}{x} & {} & {} \\ {y} & {} & {} \\ {} & {} & {}\end{bmatrix}=(1)/(14)\begin{bmatrix}{3} & -{1} & {} \\ {2} & {4} & {} \\ {} & {} & \end{bmatrix}\cdot\begin{bmatrix}{2} & {} & {} \\ {-22} & {} & {} \\ {} & {} & {}\end{bmatrix}\text{ This is for the third box} \\ \begin{bmatrix}{x} & {} & {} \\ {y} & {} & {} \\ {} & {} & {}\end{bmatrix}=(1)/(14)\begin{bmatrix}{3*2+(-1)*(-22)} & & {} \\ {2*2+4*(-22)} & & {} \\ {} & {} & \end{bmatrix}=(1)/(14)\begin{bmatrix}{28} & & {} \\ {-84} & & {} \\ {} & {} & \end{bmatrix}\text{ This is the 4th box} \\ \begin{bmatrix}{x} & {} & {} \\ {y} & {} & {} \\ {} & {} & {}\end{bmatrix}=\begin{bmatrix}{28/14} & & {} \\ {-84/14} & & {} \\ {} & {} & \end{bmatrix}=\begin{bmatrix}{2} & & {} \\ {-6} & & {} \\ {} & {} & \end{bmatrix}\text{ And finally this is the last box} \end{gathered}

User Helrich
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories