Given the following parameter:
![\begin{gathered} \mu=93 \\ \sigma=9 \\ \bar{x}=91.4 \\ n=66 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x5j14x13aw8y5hgdv5p7avlqxo3jdb2e1f.png)
Using z-score formula
![z=\frac{\bar{x}-\mu}{(\sigma)/(√(n))}](https://img.qammunity.org/2023/formulas/mathematics/college/scnep813104roece275nc5lb6blr3efbu8.png)
Substitute the parameter provided in the formula above
![z=(91.4-93)/((9)/(√(66)))](https://img.qammunity.org/2023/formulas/mathematics/college/5ttupc9uqkgn4oyukk1iwx3sg9nn5sqc7m.png)
![z=-1.4443](https://img.qammunity.org/2023/formulas/mathematics/college/hw3dlujuaxw19lgyse1r4gc9376bh08fiv.png)
The probability that the mean monitor life will be greater than 91.4 is given as
![\begin{gathered} P(z>-1.4443)=P(0\leq z)+P(0-1.4443)=0.5+0.4257 \\ P(z>-1.4443)=0.9257 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9kcne6u1kqmkb6lpozu43wv2jp40gxfp6c.png)
Hence, the probability that the mean monitor life will be greater than 91.4 months is 0.9257