The decay of this radioactive unknown compound is a first-order process.
We can express the time dependence of its mass m using a first-order integrated rate law, where k is the rate constant:
![m_t=m_0xe^(-kxt)](https://img.qammunity.org/2023/formulas/chemistry/college/4euuovewjxg6s84btbmzfpjtul7wpkbx9o.png)
mt = mass at time t
m0 = initial mass
t = time
-----------------------------------------------------------------------------------------------------
Procedure:
1) We need to find "k":
From the first-order rate law we clear k,
![\begin{gathered} (m_t)/(m_0)=\text{ }e^(-kxt) \\ \ln ((m_t)/(m_0))=\text{ -kxt} \\ (\ln ((m_t)/(m_0)))/(-t)=\text{ k} \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/u6booheghj7ew8k3cudwbtxg0d3l14tfd2.png)
![k\text{ = }(\ln ((86.96ng)/(695.7ng)))/(-47)=0.044days^(-1)\text{ }](https://img.qammunity.org/2023/formulas/chemistry/college/d3wqzq6eh5i1vp0go9aax6wclff79hnpaa.png)
----------------------------------------------------------------------------------------------
2) We find the half-life from the value of k we have just calculated:
![t_{(1)/(2)}=\text{ }(\ln 2)/(k)=\text{ }15.7\text{ days}](https://img.qammunity.org/2023/formulas/chemistry/college/aut7x2oddr9p2lrwxeagng3tyyne55331j.png)
-----------------------------------------------------------------------------------------------
3) The number of half-lives of the unknown sample is:
Number of Half-lives = 47 days / 15.7 days = 3 (approx.)
Answer: Number of half-lives = 3