81.0k views
1 vote
F(x) = (x ^ 2 + 2x + 7) ^ 3 then

F(x) = (x ^ 2 + 2x + 7) ^ 3 then-example-1
User Deloreyk
by
7.7k points

1 Answer

4 votes

Answer


f^(\prime)(x)=6(x+1)(x^(2)+2x+7)^(2)
f^(\prime)(1)=1200

Step-by-step explanation

Given


f\mleft(x\mright)=(x^2+2x+7)^3

To find the derivative, we have to apply the chain rule:


[u(x)^n]^(\prime)=n\cdot u(x)^(n-1)\cdot u^(\prime)(x)

Considering that in our case,


u(x)=x^2+2x+7
u^(\prime)(x)=2x+2+0

and n = 3, then:


=3\cdot(x^2+2x+7)^(3-1)\cdot(2x+2)

Simplifying:


f^(\prime)(x)=3\cdot2(x+1)(x^2+2x+7)^2
f^(\prime)(x)=6(x+1)(x^2+2x+7)^2

Finally, we have to replace 1 in each x in f'(x) to find f'(1):


f^(\prime)(1)=6((1)+1)((1)^2+2(1)+7)^2
f^(\prime)(1)=6(1+1)(1+2+7)^2
f^(\prime)(1)=6(2)(10)^2
f^(\prime)(1)=6(2)(100)
f^(\prime)(1)=12(100)
f^(\prime)(1)=1200

User Oakcool
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories