81.0k views
1 vote
F(x) = (x ^ 2 + 2x + 7) ^ 3 then

F(x) = (x ^ 2 + 2x + 7) ^ 3 then-example-1
User Deloreyk
by
4.1k points

1 Answer

4 votes

Answer


f^(\prime)(x)=6(x+1)(x^(2)+2x+7)^(2)
f^(\prime)(1)=1200

Step-by-step explanation

Given


f\mleft(x\mright)=(x^2+2x+7)^3

To find the derivative, we have to apply the chain rule:


[u(x)^n]^(\prime)=n\cdot u(x)^(n-1)\cdot u^(\prime)(x)

Considering that in our case,


u(x)=x^2+2x+7
u^(\prime)(x)=2x+2+0

and n = 3, then:


=3\cdot(x^2+2x+7)^(3-1)\cdot(2x+2)

Simplifying:


f^(\prime)(x)=3\cdot2(x+1)(x^2+2x+7)^2
f^(\prime)(x)=6(x+1)(x^2+2x+7)^2

Finally, we have to replace 1 in each x in f'(x) to find f'(1):


f^(\prime)(1)=6((1)+1)((1)^2+2(1)+7)^2
f^(\prime)(1)=6(1+1)(1+2+7)^2
f^(\prime)(1)=6(2)(10)^2
f^(\prime)(1)=6(2)(100)
f^(\prime)(1)=12(100)
f^(\prime)(1)=1200

User Oakcool
by
4.0k points