SOLUTION
Consider the diagram below
Applying the rule in the diagram above, we have
![|QR|=(1)/(2)(|ON|+|PM|)](https://img.qammunity.org/2023/formulas/mathematics/college/dg8le9wzu8ma9i6inwj02y0hrkvjs90ntw.png)
Recall from the questions
![\begin{gathered} |QR|=33 \\ |ON|=3x-8 \\ |PM|=7x+4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/87ihd4l3f70ejw6cwoei5ysy1wajdyrvyi.png)
Then we substitute the parameters above into the expression above
![\begin{gathered} 33=(1)/(2)(3x-8+7x+4) \\ \text{ Multiply both sides by 2} \\ 66=3x-8+7x+4 \\ \text{rerrange the terms and simplify } \\ 66=10x-4 \\ \text{collect like terms } \\ 66+4=10x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5rgcwxsp9eh93fwpldfpammwpgqsqhhjud.png)
simplify further
![\begin{gathered} 70=10x \\ \text{divide both sides by 10} \\ x=(70)/(10) \\ \text{then} \\ x=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/noq49ze6n68ovft5at06ajokcge6vz2r0o.png)
Therefore the value of x is 7
Therefore the right option is E