33.4k views
4 votes
A sample of 7 students was taken to see how many pencils they were carrying.2, 3, 2, 5, 7, 1, 41. Calculate the sample mean.2. Calculate the standard deviation.

User Ben Felda
by
4.2k points

1 Answer

4 votes

Sample mean = 3.43

sample standard deviation = 2.07

Step-by-step explanation:

Given: 2, 3, 2, 5, 7, 1, 4

Total numbers = 7

1) Sample mean is calculated by finding the average of the data set


\begin{gathered} \text{Sample mean = }\frac{su\text{ m of data set}}{number\text{ of data set}} \\ \text{sample mean = }(2+3+2+5+7+1+4)/(7) \\ \text{sample mean = 24/7 } \\ \text{sample mean = }3.43 \end{gathered}

2) We have sample standard deviation and population standard deviation.

SInce the question asked for sample mean, we will be calculating sample standard deviation.

Standard deviation is calculated as:


\begin{gathered} s\tan dard\text{ deviation = }\sqrt[]{\frac{\sum^{}_{}(x_1-mean)^2}{N-1}} \\ \\ s\tan dard\text{ deviation = }\sqrt[]{\frac{\sum ^{}_{}(2-3.43)^2+(3-3.43)^2+(2-3.43)^2+(5-3.43)^2+(7-3.43)^2+(1-3.43)^2+\mleft(4-3.43\mright)^2}{7-1}} \\ s\tan dard\text{ deviation = }\sqrt[]{(25.7143)/(6)}\text{ = }\sqrt[]{4.2857} \\ s\tan dard\text{ deviation = }2.07 \end{gathered}

User Estel
by
4.3k points