SOLUTION
Given the following
![a=1.9in,A=46.5^0,C=90^0](https://img.qammunity.org/2023/formulas/mathematics/college/u9cz8lcx7hqggoy74tbc8akwepc8bewbqo.png)
Consider the image below
To solve the right triangle, we need to find the following:
![b=\text{?,c}=\text{?and B=?}](https://img.qammunity.org/2023/formulas/mathematics/college/hjjdqpeixsl4733nxexw3h0hqtavrwluso.png)
To find B, we use the sum of angles in a triangle
hence
![\begin{gathered} A^0+B^0+C^0=180^0^{} \\ \text{where A=46.5}^0,C=90^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d19nyg51ufhdai8glu6jfd4ngwolo3sj2m.png)
Substituting into the equation we have,
![\begin{gathered} 46.5^0+B+90^0=180^0 \\ 136.5+B=180^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/imx02y7xvl5wex7cl527hk5hhv3ftbmwvd.png)
Subtract 136.5 from both sides
![\begin{gathered} 136.5+B-136.5^0=180^0-136.5^0 \\ \text{Then} \\ B=180^0-136.5 \\ B=43.5^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w5p1puhn1ziec1q8k2d5sl4jvs5fv36hxl.png)
hence
B = 43.5°
To find b, we use the trigonometry ratio for tangent
From the triangle above
![\begin{gathered} \tan A=(a)/(b) \\ \text{Where A=46.5in, a=1.9in, b=?} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fdvfhs8tejg5ej4bjg99hv8tqc0trigewp.png)
Substituting into the equation
![\begin{gathered} \tan 46.5=(1.9)/(b) \\ \text{Then } \\ b=(1.9)/(\tan46.5) \\ \text{Where tan46.5=1.0538} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8y6q26t8kc4v1o1fding1vgrydpvfk6fkq.png)
Then
![b=1.8030](https://img.qammunity.org/2023/formulas/mathematics/college/rjpi8dhxvu019faerc051huglu8egju3un.png)
hence
b = 1.8in to 1 decima place
To find c, we also apply trigonometry ratio for sine of an angle
![\begin{gathered} \text{sinA}=\frac{opposite}{\text{hypotenuse}} \\ \text{Where } \\ A=46.5^0,\text{ opposite =1.9in},\text{ hypotenuse =c} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e7y6mmcw7izle11yuhxfhdlmmgjqa0sya8.png)
Substituting the values into the equation we have,
![\begin{gathered} \sin 46.5=(1.9)/(c) \\ Multiply\text{ both sides by c, we have } \\ c*\sin 46.5=(1.9)/(c)* c \\ \text{Then } \\ c*\sin 46.5=1.9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9t9ppgml0o8ep2opip6ufa1ibaao8nfg4r.png)
Divide both sides by 1.9, we have
![\begin{gathered} c=(1.9)/(\sin 46.5)=(1.9)/(0.7254) \\ \text{Then} \\ c=2.6193 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5yrssyjzgp8sj7yhu8fu4q66fnrevibjyn.png)
hence
c = 2.6 in
Therefore, to solve the right triangle, we have
Answer; B = 43.5°, b = 1.8in, c = 2.6 in