Given: The expression below
![(y^2-3y-18)/(y^2-9y+18)](https://img.qammunity.org/2023/formulas/mathematics/college/u7iannsaabn2sxsow199pp3ntva3iz7y53.png)
To Determine: The lowest term of the given rational fraction
Solution
Let simplify both the numerator and the denominator
![\begin{gathered} Numerator:y^2-3y-18 \\ y^2-3y-18=y^2-6y+3y-18 \\ y^2-3y-18=y(y-6)+3(y-6) \\ y^2-3y-18=(y-6)(y+3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bn1np6vvmkwilbag35904dzxodz67g7pe7.png)
![\begin{gathered} Denominator:y^2-9y+18 \\ y^2-9y+18=y^2-3y-6y+18 \\ y^2-9y+18=y(y-3)-6(y-3) \\ y^2-9y+18=(y-3)(y-6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kniy7butio5blb8jzyhuzo6xqt65afv5u5.png)
Therefore
![\begin{gathered} (y^2-3y-18)/(y^2-9y+18)=((y-6)(y+3))/((y-3)(y-6)) \\ y-6-is\text{ common} \\ (y^(2)-3y-18)/(y^(2)-9y+18)=((y-6)(y+3))/((y-3)(y-6)) \\ (y^(2)-3y-18)/(y^(2)-9y+18)=(y+3)/(y-3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7geoxnjtvsvonf5g2vmp13508xro6l6fw4.png)
Hence, the rational expression in its lowest term is
![(y+3)/(y-3)](https://img.qammunity.org/2023/formulas/mathematics/college/akdh6ow46tspl0p467gon8x1xx5tiqv569.png)
The variable for the original expression is as given as
![\begin{gathered} (y^(2)-3y-18)/(y^(2)-9y+18)=((y-6)(y+3))/((y-3)(y-6)) \\ y\\e3,y\\e6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k4tcxrkzf04rlsbvj16lnu5r1tr3hcqftq.png)