Solution:
Let the two numbers be
![20\text{ and 10}](https://img.qammunity.org/2023/formulas/mathematics/college/k6grkxfh43c33tlrxr12x98opas1m5a1mz.png)
In scientific notation, the numbers are
![\begin{gathered} 20=2*10^1 \\ 10=1*10^1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r1emhj91eni9lha5svzbqq7921aklhb7zd.png)
The sum of the numbers will be
![=(2*10^1)+(1*10^1)=10^1(2+1)=10^1(3)=3*10^1](https://img.qammunity.org/2023/formulas/mathematics/college/zg5gckasyyfmzkt5f35o119v6kwyo832zw.png)
Hence, the sum is
![3*10^1](https://img.qammunity.org/2023/formulas/mathematics/college/du85zpgvbs1efyal82roipej1q5q0s5een.png)
The difference between the two numbers will be
![=(2*10^1)-(1*10^1)=10^1(2-1)=10^1(1)=1*10^1](https://img.qammunity.org/2023/formulas/mathematics/college/lu0sud6hs6b9n7vpw1upyba2mp92iedb9q.png)
Hence, the difference is
![1*10^1](https://img.qammunity.org/2023/formulas/mathematics/college/qjlc069nhhyz62vn18edoxibwuadlisgwo.png)
The product of the numbers will be
![=(2*10^1)\cdot(1*10^1)=(2*1)(10^(1+1))=2(10^2)=2*10^2](https://img.qammunity.org/2023/formulas/mathematics/college/x9o3o1ctra3q3wnp2mofl3iyxuegwj2ztz.png)
Hence, the product is
![2*10^2](https://img.qammunity.org/2023/formulas/mathematics/college/yewmj2tcruuw9txife7ooo3b8n480es100.png)
The quotient of the numbers will be
![=(2*10^1)/(1*10^1)=(2)/(1)*(10^(1-1))=2(10^0)=2*10^0](https://img.qammunity.org/2023/formulas/mathematics/college/623k5ehviizcrzlnz7b1hbk2yhi28c0k89.png)
Hence, the quotient is
![2*10^0](https://img.qammunity.org/2023/formulas/mathematics/college/afuriqbe36xifs7vpm0d2yx5k44ea85bvd.png)