79.6k views
4 votes
Find the exact values of the six trigonometric functions of the real number t

Find the exact values of the six trigonometric functions of the real number t-example-1
User Shojaeddin
by
8.3k points

1 Answer

5 votes

In a unit circle, given the (x,y) coordinate, x corresponds to cosine, and y corresponds to sine.

Then use the trigonometric identity to solve for tangent.

We therefore have the following ratios for sin, cos, and tan.


\begin{gathered} \sin t=(15)/(17) \\ \cos t=-(8)/(17) \\ \tan t=(\sin t)/(\cos t)=((15)/(17))/(-(8)/(17))=-(15)/(8) \\ \\ \text{Therefore,} \\ \sin t=(15)/(17) \\ \cos t=-(8)/(17) \\ \tan t=-(15)/(8) \end{gathered}

Solving for the reciprocal of sin, cos, and tan we have


\begin{gathered} \csc t=\Big(\sin t\Big)^(-1)=\Big((15)/(17)\Big)^(-1)=(17)/(15) \\ \sec t=\Big(\cos t\Big)^(-1)=\Big(-(8)/(17)\Big)^(-1)=-(17)/(8) \\ \cot t=\Big(\tan t\Big)^(-1)=\Big(-(15)/(8)\Big)^(-1)=-(8)/(15) \\ \\ \text{Therefore,} \\ \csc t=(17)/(15) \\ \sec t=-(17)/(8) \\ \cot t=-(8)/(15) \end{gathered}

User Shilpa Soni
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories